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ABSTRACT 

We describe a dual-process theory of how individuals estimate the probabilities of unique events, 

such as Hillary Clinton becoming US President.  It postulates that uncertainty is a guide to 

improbability.  In its computer implementation, an intuitive system 1 simulates evidence in 

mental models, and forms analog non-numerical representations of the magnitude of degrees of 

belief.  This system has minimal computational power, and combines evidence using a small 

repertoire of primitive operations.  It resolves the uncertainty of divergent evidence for single 

events, for conjunctions of events, and for inclusive disjunctions of events, by taking a primitive 

average of non-numerical probabilities.  It computes conditional probabilities in a tractable way, 

treating the given event as evidence that may be relevant to the probability of the dependent 

event.  A deliberative system 2 maps the resulting representations into numerical probabilities.  

With access to working memory, it carries out arithmetical operations in combining numerical 

estimates.  Experiments corroborated the theory’s predictions.  Participants concurred in 

estimates of real possibilities.  They violated the complete joint probability distribution in the 

predicted ways, when they made estimates about conjunctions: P(A), P(B), P(A and B), 

disjunctions:  P(A), P(B), P(A or B or both), and conditional probabilities P(A), P(B), P(B|A).   

They were faster to estimate the probabilities of compound propositions when they had already 

estimated the probabilities of each of their components. We discuss the implications of these 

results for theories of probabilistic reasoning. 

Keywords:  

Bayesianism    Frequentism    Mental models   Subjective probabilities 

 



                                                                                                            
 

1. Introduction 

 Probabilistic thinking is ubiquitous in both numerate and innumerate cultures.  Aristotle 

wrote:  “A probability is a thing that happens for the most part” (Aristotle, Rhetoric, Book I, 

1357a35, see Barnes, 1984). His account, as Franklin (2001, p. 109) argues, dominated 

philosophical and legal thinking about probabilities during the subsequent two millennia until the 

invention of the probability calculus.  It continues to describe probabilistic thinking in 

contemporary contexts: physicians tend to offer prognoses using qualitative expressions, e.g., “a 

high risk” and “a low likelihood” rather than quantitative ones (White et al., 2010). The calculus 

transformed the qualitative conception of probability into a numerical one.  It depends on logic 

or set theory, as evinced in its axiomatizations (Scott & Krauss, 1966) and in Boole’s (1854) dual 

interpretation of formulas in his algebra as statements about sets and about numerical 

probabilities. Theorists accordingly treat probabilities as estimates of truth values, and as a 

natural extension or generalization of two-valued logic (e.g., de Finetti, 1936/1995; Jeffrey, 

1983; Ramsey, 1926/1990). 

 The applicability of the probability calculus to everyday reasoning is controversial, 

because no consensus exists about the proper interpretation of the calculus, and hence about the 

situations to which it applies (see Baron, 2008, Ch. 5; Nickerson, 2004, Ch. 1).  Philosophers are 

divided on this issue (see Hájek, 2003).  Likewise, some psychologists defend a frequency 

interpretation of probabilities, which therefore does not apply to unique events (e.g., Cosmides & 

Tooby, 1996; Gigerenzer, 1994), whereas other defend a subjective view of probabilities 

corresponding to degrees of belief, which therefore does apply to unique events (e.g., Chater, 

Tenenbaum, & Yuille, 2006; Tversky & Kahneman, 1983).  Complex epistemological issues 

underlie even these so-called “Bayesian” views of probability, which also divide into objective 

 



                                                                                                            
 

interpretations (e.g., Williamson, 2010) and subjective interpretations (e.g., Jeffrey, 2004). We 

will not pursue these epistemological issues, and simply note that naive individuals – those who 

have not mastered the probability calculus – appear to estimate probabilities in several ways.  

They use frequency data if they are available, they adduce relevant physical considerations such 

as that dice have six sides, and they use evidence to estimate the probabilities of unique events.  

They can make informal non-numerical estimates, specific numerical estimates, or estimates of 

the range or interval of probabilities.  Their estimates rely on two main methods (Tversky & 

Kahneman, 1983).  Extensional methods depend on deducing the probability of an event from 

the mutually exclusive ways in which it could occur, which are either equiprobable or of known 

probabilities.  These methods are explicable in terms of mental models of the possibilities  

(Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 1999).  Non-extensional methods 

depend on inducing the probability of an event from some relevant evidence, index, or heuristic 

such as that if an exemplar is typical of a category, it is likely to be a member of the category 

(Tversky & Kahneman, 1983). 

 The distinction between the probabilities of events that occur with some frequency and 

the probabilities of unique events is subtle.  The probability that a particular throw of a roulette 

ball lands on a red number can be inferred from the frequency that it has done so in the past, i.e., 

that particular ball on that particular roulette wheel. The instance is a clear member of a single 

set of cases in which the ball lands on a red number, whose cardinality can be compared with that 

of the set in which the ball does not land on a red number.  In contrast, the probability that 

Hillary Clinton is elected US President in 2016 is not a member of a single set of cases that 

allows a definitive inference of its value.  Many different sets could be relevant – women elected 

President, Democrats elected President, Yale graduates elected President, and so on.  They yield 

 



                                                                                                            
 

different frequencies of the outcome, and none of these frequencies is, or can be, definitive.  The 

present article concerns inferences about unique events, such as Clinton’s election to the 

Presidency, and we define a unique event as one that is not a member of any single set allowing a 

definitive inference of the frequency of its occurrence. 

 Tversky and Kahneman (e.g., 1983) pioneered the study of the probabilities of unique 

events, and they demonstrated egregious fallacies in inferring them from hypothetical scenarios.  

The present research diverges from their studies in three ways.  First, we focus on the 

probabilities of real possibilities in everyday life (cf. Ungar et al., 2012). Second, we do not use 

scenarios designed to elicit the use of heuristics, but instead simply pose questions to the 

participants about real possibilities, such as: What is the probability that the music industry will 

embrace a new and more relaxed version of copyright law in the next 10 years?  Third, and most 

important, the goals of our research are to describe a model-based theory of the mechanisms 

underlying estimates of the probabilities of unique events and compounds of them, to outline its 

implementation in a computational model, and to report experimental corroborations of its 

principal predictions. 

 A profound mystery about estimates of the probabilities of unique events is where the 

numbers come from and what determines their magnitudes.   It is conceivable, of course, that 

estimates of such probabilities are unsystematic, unprincipled, and meaningless (cf. Cosmides & 

Tooby, 1996).  And so one aim of our empirical studies was to check whether or not this 

possibility is correct.  On the presupposition that it would not be, we developed a theory of how 

people make such estimates using mental models, and we implemented this theory as part of a 

unified computational model of logical and probabilistic reasoning, mReasoner.  This model-

based theory and its implementation explain how individuals infer the probabilities of unique 

 



                                                                                                            
 

events, and where the numbers in such estimates come from.  The theory also predicts systematic 

violations of the probability calculus.  In order to explain these violations, however, we must first 

describe the complete joint probability distribution (the JPD) and the concept of subadditivity. 

Given two propositions and their respective negations: 

1. A: It will snow tomorrow. 

 B: It will freeze tomorrow. 

there are four possible contingencies: A&B, A&¬B, ¬A&B, and ¬A&¬B, where “&” denotes a 

logical conjunction, which is true if and only if both conjuncts are true, and “¬” denotes logical 

negation, and so ¬A is true if and only if A is false.  The respective probabilities of each of these 

contingencies make up the complete joint probability distribution (JPD) for the propositions A 

and B.   The JPD generalizes to any number of random variables, and to variables that are not 

just binary but that have multiple values.  The JPD yields the probability of any compound 

proposition concerning its individual events.  Suppose, for example, the JPD of the events above 

is as follows: 

2. P(snows & freezes)  = .4 

 P(snows & ¬ freezes)  = .3 

 P(¬ snows & freezes)  = .2 

 P(¬ snows & ¬ freezes)  = .1 

They yield the probability of any compound of the individual events in it, e.g., the conditional 

probability that it snows given that it freezes is .4/(.4 + .2) = .66, and the converse conditional 

probability that it freezes given that it snows is .4/(.4 + .3) = .57.   The conditional probability, 

P(A|B) can also be inferred using Bayes’s theorem, which, given P(B) ≠  0, can be expressed as:  

3.   P(A|B) = P(A) P(B|A) 
            P(B) 

 



                                                                                                            
 

But, the three probabilities on the right-hand side of the equation in (3) are just one way to fix the 

values of the JPD. And the conditional probability, P(A|B) can be inferred from the JPD however 

its values are fixed. 

A subadditive function is one for which the value for the whole is less than the sum of the 

values for the parts, as in the square root function where √(4 + 4) < √4 + √4.  Probability, 

however, is not subadditive, i.e., P(A) = P(A&B) + P(A&¬B).  Hence, P(A&B) must be less than 

or equal to P(A), and less than or equal to P(B).  Estimates that violate this principle are 

subadditive and are known as “conjunction fallacies”, because the probability of the conjunction 

is then greater than the probability of one of its conjuncts (see, e.g., Tversky & Kahneman, 

1983).  Conjunction fallacies yield at least one, and possibly two, negative probabilities in the 

JPD.  A set of estimates of probabilities can also be superadditive, yielding a JPD that sums to 

less than 1.  The estimates of P(A), P(B),  and P(A&B) cannot be superaddive, but the addition of 

a fourth estimate, such as P(¬A&¬B), can be.  Subadditivity and superadditivity have normative 

consequences.  Reasoners who produce estimates of probabilities that are subadditive or 

superadditive violate the probability calculus.  Their performance is irrational and not coherent, 

because in principle a “Dutch book” can be made against them, i.e., a set of bets in which they 

are bound to lose (see, e.g., de Finetti, 1936/1995; Ramsey, 1926/1990). 

 Suppose someone estimated the following probabilities for snow and freezing:   

4. P(A)   = .7 

 P(B)   = .7 

 P(A&B)  = .3 

The estimates do not commit the conjunction fallacy, but the probability of the conjunction is too 

small and so the estimates yield the following JPD:  

 



                                                                                                            
 

5. P(A&B)     =    .3 

  P(A&¬B)   =   .4 

 P(¬A&B)   =    .4 

 P(¬A&¬B) =  -.1 

The three estimates therefore yield a negative probability in the JPD. 

 Negative probabilities are impossible in the probability calculus, but Dirac (1942) 

introduced them in his quantum probabilities, and some psychologists have argued for their use 

to account for human judgments (Pothos & Busemeyer, 2013).  A corollary is that the 

“conjunction fallacy” ceases to be a fallacy, and, as Oaksford (2013) argues, the notion of 

rationality as the avoidance of inconsistency ceases to apply.  In daily life, nothing is less 

probable than the impossible, and so the number of negative probabilities in the JPD provides a 

metric for inferences about probabilities. For JPDs based on two possibilities A and B, the metric 

has three values: 0 negative probabilities (a consistent JPD), 1 negative probability (one violation 

of the JPD), and 2 negative probabilities (two violations of the JPD).  This metric is analogous to 

a measure of “semantic coherence” (Wolfe & Reyna, 2010), but the latter depends on P(A), P(B), 

P(A&B), and P(AvB).  In contrast, the present metric applies to any set of estimates that fix a 

JPD. 

 The model theory predicts the occurrence of systematic violations of the JPD in many 

different sorts of judgment, and we report studies corroborating the occurrence of such 

violations.  In what follows, the article describes pertinent previous studies, the model theory of 

what people are computing in estimating unique probabilities, and the computer implementation 

of how they make such computations.  It derives the model theory’s principal predictions, and 

reports three experiments that corroborate these predictions for conjunctive, disjunctive, and 

 



                                                                                                            
 

conditional probabilities. Finally, it discusses the implications of the results for theories of 

reasoning.  

 

 2. Previous studies 

 Extensional and non-extensional estimates of probabilities show that naïve individuals 

violate the norms of the probability calculus, i.e., they commit fallacies.  In extensional cases, 

theorists have proposed various accounts of how to predict estimates of the probability of 

compound assertions, but they center around the hypothesis that individuals take the mean of the 

probabilities of the conjuncts or some function thereof (e.g., Fantino, Kulik, Stolarz-Fantino, & 

Wright, 1997; Wyer, 1976), the mean of the probabilities of disjuncts in estimates of disjunctions 

(e.g., Bar-Hillel & Neter, 1993; Tversky & Kahneman, 1983; Young, Nussbaum, & Monin, 

2007), and a similar procedure in estimates of conditional probabilities (Reyna & Brainerd, 1995, 

2008; Wolfe & Reyna, 2010).   In non-extensional cases, theorists propose accounts based on the 

representativeness of the conjunction in comparison with the vignette that is the basis of the 

estimates (Barbey & Sloman, 2007; Fantino, 1998; but cf. Wallsten, Budescu, Erev, & Diederich, 

1997; Wallsten, Budescu, & Tsao, 1997).  In their studies of representativeness, Tversky and 

Kahneman (1983, p. 306) considered the hypothesis that individuals estimate the probability of a 

conjunction by taking the average of the probabilities of its conjuncts.  Tversky and Koehler 

(1994) proposed “support” theory to account for estimates of the probabilities of disjunctions, 

which tend to be less than or equal to the sum of the probabilities of their disjuncts (Rottenstreich 

& Tversky, 1997).  Likewise, Zhao, Shah, & Osherson (2009) present convincing evidence that 

individuals do not compute the ratio of P(A&B) to P(B) in estimating P(A|B) for real future 

possibilities.  Some authors propose instead that they rely on the Ramsey test (e.g., Evans, 2007; 

 



                                                                                                            
 

Gilio & Over, 2012) – a possibility to which we return later. 

 Despite these studies, three main gaps in knowledge exist.  First, no account exists of the 

mental processes underlying the participants’ estimates of the probabilities of real but unique 

possibilities, though Wyer (1976) called for such investigations nearly 40 years ago.  Second, as 

a consequence, psychologists have no account of the mental processes that yield numerical 

probabilities from non-numerical premises.  Third, with few exceptions (Over et al., 2007; Zhao 

et al., 2009), psychologists have not studied estimates of the probabilities of unique events that 

are real possibilities.  Hence, we cannot be certain that individuals concur in their estimates of 

such probabilities, or whether they are likely to violate the JPD in making them.  We now 

consider a theory designed to fill these gaps in knowledge. 

 

3. A model theory of unique probabilities and their compounds 

 We describe a theory (the “model” theory) that is founded on the notion that individuals 

build mental models to understand discourse and make inferences. The model theory of the 

probability of unique events aims to take into account previous studies, to ground them in terms 

of the familiar distinction between intuitions and deliberations, and to derive new predictions 

about the probabilities of unique events.  A preliminary study described experiments with 

conjunctions (Khemlani, Lotstein & Johnson-Laird, 2012), but we now present a comprehensive 

theory that also deals with the probabilities of disjunctions and conditional probabilities.   In this 

section, we focus on what people are computing.  But, in the section that follows we outline a 

computer implementation of the algorithm that the model theory postulates as underlying human 

estimates of unique probabilities. 

 The theory postulates that estimates of the probabilities of unique events depend on 

 



                                                                                                            
 

intuitions (system 1) and on deliberative reasoning (system 2).  This distinction is a familiar one 

in dual-process theories of judgment and reasoning (see, e.g., Evans, 2008; Johnson-Laird, 1983, 

Ch. 6; Kahneman, 2011; Sloman, 1996; Stanovich, 1999; Verschueren, Schaeken, & d’Ydewalle, 

2005; Wason & Evans, 1975; Wason & Johnson-Laird, 1970).  These theories have antecedents 

in Turing (1939) and Pascal (1966/1669).  Some accounts (Evans & Stanovich, 2013) have been 

criticized as not empirically refutable (Keren, 2013), and as not distinguishable from accounts 

based on a single system (Kruglanski, 2013).  One prophylactic to both these problems is to 

implement a computer model of the two systems and of how they interact.   The next section of 

the article (4) presents such an implementation, which distinguishes between the two systems in 

terms of their computational power.  Here, however, we describe the model theory of intuitions 

about probabilities (System 1) and of deliberative processes concerning them (System 2). 

 

3.1. Intuitions about probabilities 

 Intuitions about probabilities are not numerical, but reflect the Aristotelian idea that 

events vary from impossible to certain, with various intermediate cases.  They can be expressed 

informally (Budescu, Karelitz, & Wallsten, 2003; Wallsten & Budescu, 1995) in such 

Aristotelian terms as: 

6. impossible, almost impossible, highly unlikely, unlikely, as likely as not, likely, highly  

 likely, almost certain, certain.   

The theory postulates that the single most important intuitive guide to improbability is 

uncertainty.  The two seem to be synonymous, but, as we show, they can diverge from one 

another, and lead to errors in estimates of probabilities. 

 Uncertainty as a state of mind arises in various ways.   Suppose, for instance, you assess 

 



                                                                                                            
 

the probability of the following event: 

7. Hillary Clinton is elected US President in 2016. 

You may adduce several pieces of evidence that concur, in which case you can make a 

corresponding intuitive estimate, such as, “It is likely”.   But, suppose instead that your evidence 

conflicts.  On the one hand, for example, you think that Clinton is well known as a highly 

competent politician, and that many people will vote for such a politician.   But, on the other 

hand, you think, she is female and no woman has ever been elected President.  Such conflicts are 

a source of uncertainty: one piece of evidence suggests that her election is likely, but another 

piece of evidence suggests that it is unlikely.  Your problem is to reconcile at least two 

conflicting judgments.  It is analogous in the probability calculus to inferring P(Clinton-is-

elected) from two different conditional probabilities, P(Clinton-is-elected|Clinton-is-competent) 

and P(Clinton-is-elected|Clinton-is-female).  In fact, these two values do not fix P(Clinton-is-

elected), which calls for still more evidence.  Normative theories of how to reconcile conflicting 

probabilities can be founded on Bayesian considerations (e.g., Lindley, Tversky, & Brown, 

1979). But, unless you are an expert, your intuitions are unlikely to suggest a need for additional 

evidence, because you need to reconcile the current conflict, which further evidence might 

exacerbate.  Intuition yields a simple conservative compromise:  you split the difference between 

your two judgments, i.e., you take their average (see Wallsten, et al., 1997).  Clinton’s election is 

accordingly, “as likely as not”.  Of course you may adduce more than two pieces of evidence, 

and have to reconcile a conflict between them.  The theory postulates that system 1 deals with 

them by reconciling its initial estimate of a probability with each successive piece of evidence, 

and the next section describes a feasible mechanism. 

            Suppose you have to estimate the probability of a conjunction, such as: 

 



                                                                                                            
 

8.  Clinton is elected US President in 2016 and all wars in the world cease in 2017. 

If the evidence you adduce suggests that Clinton is likely to be elected, and other evidence – 

including perhaps the election of Clinton – suggests all wars are not likely to cease, you need to 

resolve the conflict.  And, once again, intuition makes a compromise and takes the average. 

            Disjunctions are a major source of uncertainty both in reasoning (e.g., Johnson-Laird, 

Byrne, & Schaeken, 1992; Johnson-Laird, Lotstein, & Byrne, 2012) and in decision making 

(e.g., Tversky & Shafir, 1992).  An assertion about an individual event, such as (7), rules out 

more possibilities than an inclusive disjunction into which it enters, such as: 

9. Clinton is elected US President in 2016, or all wars in the world cease in 2017, or both. 

This disjunction yields three separate mental models to represent each of the three possibilities to 

which it refers, and they include one that is incompatible with the model of the individual event, 

namely, the possibility in which Clinton is not elected, but all wars cease in 2017.   It follows that 

the assertion about the individual event conveys more semantic information than the disjunction 

(Bar-Hillel, 1964).  Hence, because uncertainty suggests improbability, intuition assesses the 

disjunction as less likely than the individual event. 

           Suppose that you are asked to estimate a conditional probability, such as 

10. Given that all wars in the world end in 2015, what is the probability that Clinton is  

elected US President in November in 2016? 

System 1 cannot compute Bayes’s theorem, and so the model theory posits that intuition relies on 

a simple procedure.  It treats the event in first clause in (10) as evidence for the event in the 

second clause.  It then uses the same procedure that we described earlier to estimate the 

probability of an individual event from evidence.  According to Bayes’s theorem, a conditional 

probability, P(B|A), depends on the values of three variables: the prior converse conditional 

 



                                                                                                            
 

probability, P(A|B), and the base rates of the two events: P(A) and P(B).  Equivalently, P(B|A) 

depends on the ratio, P(A&B)/P(A).  Naïve individuals, according to the theory, tend to reduce 

the problem to a matter of how the dependent variable, P(B), changes given that the independent 

variable A is true.  Of course, individuals may suppose that the given event in (10) is irrelevant 

to Clinton’s election.  In which case, they can adduce their own evidence for her election, using 

the procedure for individual events.  A conditional probability P(B|A) in the standard probability 

calculus is undefined if the given condition A is false, because the ratio P(A&B) to P(A) would 

then call for division by zero.  But, the model theory allows that individuals can envisage 

counterfactual models (Byrne, 2005), and so they can make estimates of conditional probabilities 

in this case too.  Another way to avoid this problem is to formulate the probability calculus so 

that conditional probability is treated as a primitive rather than introduced by definition (see also 

Appendix 2 of Adams, 1998). 

 A consequence of the intuitive methods for estimating the probabilities of compounds is 

that when system 2 transforms system 1’s intuitions into numerical values, the resulting values 

violate the complete joint probability distribution (the JPD), i.e., it contains at least one negative 

probability. Even expert probabilists are prone to violate the JPD in judgments about 

probabilities.  Only certain special cases of variables are likely to be free from risks of violation.   

For example, if one event is inconsistent with another, as in: 

11. Hillary Clinton is elected US President in 2016 and Joe Biden is elected US President in 

2016 

individuals know that it is impossible for both events to occur, and so they will estimate the 

probability of their conjunction as zero regardless of their estimates of the probability of the 

 



                                                                                                            
 

conjuncts. Likewise, if one event contradicts another, then individuals who evaluate their 

disjunction, such as: 

12.   Clinton is either elected US President in 2016 or not 

know that one or other of these two is bound to occur, and so they will estimate the probability of 

their disjunction as 1.0 regardless of their estimate of the probability of Clinton's election. But, 

contradictory and tautological combinations of events such as the preceding examples are rare, 

and so most estimates of the probabilities of unique events depend on evidence. 

 

 3.2 Deliberations and numerical probabilities 

           The deliberative system (system 2) has access to working memory, and so it can carry out 

recursive processes, such as counting and other arithmetical operations – at least until they 

overload processing capacity and call for an external notation.  And it is this system that maps 

the intuitive system’s judgments into numerical estimates.  The deliberative system can also try 

to keep track of the JPD, though naïve individuals are unlikely to do so in any exact way unless 

prompted.  One corollary of the difference between the two systems concerns the apparent 

vagueness of verbal descriptions of probabilities in comparison with numerical probabilities.  In 

fact, verbal descriptions make explicit the contrast in polarity between affirmatives such as 

“probable” and negatives such as “improbable” around a neutral midpoint of “as likely as not”, 

whereas numerical probabilities make no such explicit morphological contrast.  Hence, verbal 

descriptions are more explicit about polarity than degree whereas numerical probabilities have 

the converse property (see Teigen & Brun, 2000).  Verbal descriptions of the sort that system 1 

produces, such as “highly probable”, have moderately coherent mappings into numerical 

estimates (see, e.g., Reagan, Mosteller, & Youtz, 1989; Wallsten & Budescu, 1995), and so too 

 



                                                                                                            
 

do determiners such as “some” and “not all” (Teigen & Brun, 2003).  But, if the numerical scale 

is of a finer grain than intuitive judgments, the mapping calls for an arbitrary choice of a 

particular number from a range of possibilities. Hence, the mapping from intuitions to a scale 

should be more likely to yield a consistent JPD with a coarse scale than with a fine scale.  Monte 

Carlo simulations bear out this phenomenon, and a previous study corroborated this prediction 

(Khemlani, et al., 2012): coarse scales yielded a greater proportion of consistent JPDs than fine 

numerical scales, and this result supports system 1’s use of a coarse mental scale. 

 System 2 allows individuals to hold numerical estimates in memory.  It is particularly 

useful for extensional judgments for which the input is numerical estimates (see Johnson-Laird et 

al., 1999).  If the arithmetic is easy, then whether the data are, say, natural frequencies or chances 

out of 100 – does not seem to affect estimates.  Readers may be tempted to assume that system 2 

is fully rational.  In fact, it suffers from several impediments.  One is the computational 

intractability of most rational systems, including the probability calculus, logic, and decision 

theory.  Each time a new variable is added to the JPD, the number of contingencies it contains 

doubles in size, e.g., the JPD for three binary variables A, B, and C, represents 8 contingencies, 

and, in general, n binary variables calls for 2n contingencies.  Bayesian nets (Pearl, 1988), which 

allow one to infer probabilities without having to construct a complete JPD, are also intractable, 

even with only approximate calculations (Dagum & Luby, 1993).  Some theorists reject 

intractable accounts of cognition (e.g., Gigerenzer, Hoffrage, & Goldstein, 2008; Oaksford & 

Chater, 2007, Ch. 2); other theorists propose accounts that are intractable (for a review, see van 

Rooij, 2008).  A synthesis of these various standpoints is that human reasoners are bound to 

make inferences in domains that cannot have tractable algorithms, such as two-dimensional 

spatial reasoning (Ragni, 2003).  In consequence, they can cope only with small-scale problems 

 



                                                                                                            
 

in intractable domains (Johnson-Laird, 2006, p. 340; van Rooij, 2008, p. 971). 

 Another impediment to rationality in system 2 is a consequence of a central principle of 

the model theory: mental models represent what is true at the expense of what is false.  A 

corollary is that system 2 deliberations about extensional probabilities can err.  Consider, for 

instance, the following problem: 

13. There is a box in which there is at least a red marble, or else there is a green  

 marble and there is a blue marble, but not all three marbles.  What is the  

 probability of the following situation: 

 In the box there is a red marble and a blue marble?  

The premise has two mental models: one represents the presence of a red marble, and the other 

represents the presence of a green and a blue marble.  In neither case is there a red marble and a 

blue marble.  As this account predicts, the majority of participants in an experiment inferred that 

the probability of their conjunction was zero (Johnson-Laird et al., 1999).   In fact, when the first 

disjunct in the premise is true (a red marble is in the box), there are three ways in which the 

second disjunct can be false, and so the box can contain any of the following four sets of 

marbles: 

 red green     

 red  blue 

 red 

  green blue 

The second of these possibilities shows that a red and blue marble can be in the box, and so their 

conjunction is not impossible.  Despite the occurrence of systematic fallacies of this sort, system 

2 should be much better than system 1 in inferring probabilities: deliberation trumps intuition in 

 



                                                                                                            
 

this domain.  Inferences about the probabilities of unique events cannot be estimated in a 

thoroughgoing extensional way, and so human reasoners are bound to rely heavily on system 1. 

 A major impediment to the rationality of system 2 is ignorance.  Experts can rely on 

system 2 to use the numerical probabilities of individual events to compute the correct values for 

their conjunction: 

14. P(A&B) = P(A)*P(B|A) 

their disjunction: 

15. P(AvB) = P(A) + P(B) – P(A&B) 

and their conditional probability using Bayes’s theorem (3).  Naïve individuals, in contrast, do 

not know these formulas for computing probabilities.  When system 2 is engaged, they can at 

best grasp that the probability of a conjunction of independent events is their product, and that 

the probability of a disjunction of inconsistent events is the addition of their probabilities.  But, 

they do not know Bayes’s theorem (Zhao et al., 2009), and even when they are taught it, they 

find it difficult to use, because it is not intuitive (Shimojo & Ichikawa, 1989).  We polled thirty 

cognitive scientists who had published on probability, and asked them the following question:  If 

one knows the probability of A and the probability of B, what constraints if any do they place on 

the conditional probability of B given A?   Some replied, “none”; some replied that they did not 

know; and only a handful knew the correct answer (see Appendix A).   The constraints are way 

beyond the intuitive system; and estimates of conditional probabilities lie on the boundary of 

naïve competence (Johnson-Laird et al., 1999). 

 The best definition of a conditional probability, P(B|A), according to Bennett (2003) is 

provided by Ramsey’s (1926/1990) test for fixing your degree of belief in assertions of the form 

If A then B: you add A to your beliefs and then estimate the probability of B.  Evans and his 

 



                                                                                                            
 

colleagues have defended the Ramsey test as a psychological account of how individuals 

estimate conditional probabilities (e.g., Evans, 2007, p. 54).  Earlier we mentioned the problems 

of computing conditional probabilities when the given condition, A, is false.  The Ramsey test 

can be extended to deal with these cases.  Individuals adjust their beliefs to accommodate its 

falsity without inconsistency, and then assess the probability of B in that context.  One drawback 

with the Ramsey test is that it takes no account of the probability of A.  Another drawback is that 

no one has described its underlying mental processes, and any plausible account of them is likely 

to be computationally intractable (see Oaksford & Chater, 2007, p. 107).  In contrast, the model 

theory, as we described earlier, postulates a simple tractable procedure for estimating conditional 

probabilities in system 1.  We now turn to an account of a computer implementation of the model 

theory. 

 

4. How people compute unique probabilities: an algorithm 

 In the present section, we describe an algorithmic theory of the mental processes 

underlying the estimates of the probabilities of unique events.  Empirical results place fewer 

constraints on algorithms than on the functions they compute, because any computable function 

has a countably infinite number of distinct algorithms (Rogers, 1967, p. 9).  Nevertheless, the 

success of the model theory’s predictions, as shown in the experimental results below, lends 

some support to the present account of how the computations might be carried out.  The aim of 

the implementation, however, was to explain in principle how numerical estimates derive from 

non-numerical information of an Aristotelian sort.  The program, mReasoner, is intended to unify 

deductive and probabilistic reasoning, and it embodies all of the operations of system 1 and 

system 2 for the probabilities of unique events.  It is also capable of many other sorts of 

 



                                                                                                            
 

inference.  Its source code is in the public domain, and is available at: 

http://mentalmodels.princeton.edu/models/mreasoner/. The reason for integrating the deductive 

and probabilistic systems in a single program is to show that inferences about probabilities, 

whether extensional or not, can be made with mental models. The program copes only with a 

fragment of natural language, and it does not, at present, deal with relations of the following sort: 

A is not less probable than B, which play a foundational role in de Finetti’s theory (Hosni, 2013).  

Table 1 summarizes its overall plan. 

 The algorithm is based on three main constraints. The first is that the intuitive system has 

no access to working memory, and so it cannot carry out recursive or iterative processes.  Hence,  

 

Table 1: A summary of mReasoner’s Systems 1 and 2 for inferring the probabilities of unique 

events and their compounds.  

System 1 
Assessment of the probability of 

unique events 

System 2 
Numerical and arithmetical 

computations 
1. Represent a piece of evidence as a 

mental model (Khemlani & Johnson-
Laird, 2012a, b). 

2. Convert a mental model into an icon 
representing a probability: magnitudes 
in icons correspond to probabilities. 

3. For cases in which two conflicting 
estimates occur, use a primitive average 
to resolve the conflict (see Table 2). 

4. Translate the resulting icon into 
informal language, e.g., “highly 
probable”. 

5. Convert an icon (from 3) into a 
numerical probability. 

6. Carry out arithmetical operations in 
extensional reasoning about the 
probability of compounds (Johnson-
Laird et al., 1999). 

7. Check the consistency of the JPD, 
where prompted to do so, for simple 
cases. 

 
Note: Steps 1-4 can be used to compute compound probabilities, e.g., P(A&B). Conjunctive and 
disjunctive probabilities use primitive averaging to estimate the compound, while conditional 
probabilities, P(A|B) use B as evidence to estimate P(A). 

 

it cannot carry out arithmetical operations, such as counting and addition.  It lacks even the  

 



                                                                                                            
 

computational power of finite-state automata (Hopcroft & Ullman, 1979), because it can carry 

out a loop of operations for only a small number of times – a restriction that is built into its 

computer implementation in mReasoner. 

The second constraint is that the algorithm adduces as little evidence as possible in order 

to estimate probabilities.   But, additional evidence can push the probability represented in the 

system one way or the other.  If a piece of evidence concurs with the current estimate, the system 

yields the informal estimate that they both support.  If a piece of evidence conflicts with the 

current estimate, then the system resolves the conflict.  It can, in principle, add further evidence 

in a piecemeal way, resolving any conflict between its current estimate and the impact of the new 

piece of evidence.  

             The third constraint is that the algorithm relies on primitive analog representations of 

magnitudes akin to those in animals (Meck & Church, 1983), infants (Barth, et al., 2006; Carey, 

2009; Dehaene, 1997), and adults in numerate (Song & Nakayama, 2008) and non-numerate 

cultures (Gordon, 2004). These icons are not numerical, and they represent magnitudes by a 

direct analogy: the greater the size of the icon, the greater the magnitude that it represents.  For 

probabilities, icons represent the degree of belief in a proposition as a pointer on a ‘line’ 

extending between an origin representing impossibility and a maximum representing certainty: 

16.   |−−−−−−  | 

The left vertical represents impossibility, the right vertical represents certainty, and the mid-point 

between them represents the boundary between the probable and the improbable, though for 

simplicity, we omit midpoints from these diagrams.  The rightmost end of the line is a pointer 

that represents a magnitude corresponding to the strength of a particular belief, i.e., a subjective 

probability.   The line is not the real number continuum, which is infinitely and non-denumerably 

 



                                                                                                            
 

dense, and so cannot have an isomorphic representation in any finite device, such as the human 

brain.  Instead, the line has granularity – it is made up of minimal indivisible elements.   The 

model theory postulates that the granularity of mental icons is quite coarse, and mReasoner uses 

similarly coarse icons with a granularity of eight divisions between impossibility and certainty, 

corresponding to the informal Aristotelian terms listed in (6) above.    Overall, system 1 adduces 

evidence from knowledge of a relevant domain, simulates it in mental models, and uses these 

models to form an icon, which it can describe in Aristotelian terms. 

 The mReasoner program can judge probabilities using its small knowledge base, or it can 

interact with users to acquire such knowledge.  When it interacts with users, its first step is to 

solicit from them any logical relation between the relevant propositions, A and B.  For example, 

if A contradicts B, then their conjunction is impossible and has a probability of 0, but their 

disjunction is certain and has a probability of 1.0.  If instead A implies B, then their conjunction 

equals the probability of A.  The program also assesses whether the user believes that the 

occurrence of A has any effect on the probability of B, and whether such an influence increases 

or decreases its value.  It solicits evidence for this influence from the user.  We now consider 

how system 1 uses evidence to infer the probabilities of unique events, and how it infers 

conjunctive, disjunctive, and conditional probabilities. 

 

4.1. The implementation of intuitions about probabilities 

 System 1 in mReasoner can make an intuitive estimate of a unique probability, such as: 

17. What is the probability that Apple is profitable this year?   

It uses knowledge, such as:  

18.        Apple is a well-managed company 

 



                                                                                                            
 

and:  

19. Most well-managed companies are profitable. 

in order to infer:   

20.  Apple is likely to be profitable. 

The preceding inference is striking, because the conclusion refers to a probability, but neither 

premise does, so an obvious question is: where does the probability come from?  System 1 infers 

it from a mental model of the quantified assertion (19).  In principle, it could do so from a pre-

existing model in its database, but the present method allows users to input their own premises 

akin to those above.  The program constructs a mental model representing the evidence that most 

well managed companies are profitable: 

21. well-managed-firm profitable 

 well-managed-firm profitable 

 well-managed-firm profitable 

 well-managed-firm 

This diagram denotes a mental model of an arbitrary number of entities – four in this case, and so 

its first row represents a well-managed company that is profitable (for the details of how models 

are constructed from quantified assertions, see Khemlani & Johnson-Laird, 2012a, b).  Unlike 

the diagram, a real mental model is a simulation of actual entities (Khemlani, Mackiewicz, 

Bucciarelli, & Johnson-Laird, 2013).   Some models, however, also contain abstract symbols, 

e.g., a symbol for negation (Khemlani, Orenes, & Johnson-Laird, 2012).  Given that Apple is a 

well-managed firm, system 1 uses the model above to construct an icon derived from the 

proportion in the model of well-managed firms that are profitable: 

22. |−−−−−−  | 

 



                                                                                                            
 

System 1 can translate this icon into a verbal description: 

23. It’s highly likely. 

 System 1 copes with determiners ranging from all and any through most and many to few 

and none.   It can represent only a single mental model at any one time, but it can consider more 

than one piece of relevant evidence.  Indeed, users may know that Apple is an innovator, and 

believe that some innovators are profitable.  If system 1 uses only this evidence, and ignores the 

evidence yielding the conclusions in (23), it constructs the following icon: 

24. |−−−−    | 

This icon ends at the midpoint, and so it translates into: “as likely as not”.   

 Readers may wonder why the theory postulates the use of an icon given that proportions 

in models correspond to what the icon represents.  The answer is that an icon allows different 

pieces of evidence for an event to be combined in order to estimate its probability. And so system 

1 can combine the effects of several pieces of evidence about Apple's profitability.  It starts with 

the first piece of evidence, such as that most well managed companies are profitable, from which 

given that Apple is well managed, it can make the inference yielding the belief icon in (22).  

With further evidence, such as that Apple is an innovator, and that some innovators are 

profitable, it infers that Apple’s profitability is  “as likely as not”.  It inserts this probability as a 

second pointer, “^”, into the existing icon in (22) to yield one that represents two different 

probabilities (the new pointer and the right-hand end of the icon): 

25. |−−−^−−  | 

System 1 then makes a primitive average of the pointer and the end of the icon to yield: 

26. |−−−−−   | 

 



                                                                                                            
 

The two pieces of evidence about a single event yield an icon supporting the conclusion that 

Apple is likely to be profitable (20).  Likewise, any subsequent piece of evidence can shift the 

existing pointer using the same mechanism.  The theory, however, postulates that individuals 

tend to consider only a minimal amount of evidence.  

 The way in which system 1 makes primitive averages depends on its non-numerical 

operations, which we now review before considering the computation of the probabilities of 

compound events.  System 1 can carry out six non-numerical, or primitive, operations: p-

averages, p-adds, p-subtracts, p-longer, p-multiplies, and p-divides.  Table 2 summarizes these 

operations.  Each of them relies on a finite loop that iterates no more than a small fixed number 

of times depending on the granularity of icons.  Both the number of iterations and the granularity 

of icons may vary from one person to another.  The operation, p-averages, is a primitive form of 

averaging: it moves two pointers towards one another until they meet, and so it yields a rough 

average of their values.  This operation deals with icons representing conflicts in the evidence for 

a single event, such as Apple’s profitability.  It is also the simplest operation in Table 2.  We 

assessed the simplicity of the operations in Table 2 using the standard measure of Kolmogorov 

complexity (see Li & Vitányi, 1997).  This measure assesses the complexity of a string of 

symbols from the length of its shortest possible description in a reference language, and this 

measure predicts the difficulty that naïve individuals have in specifying informal algorithms 

(Khemlani et al., 2013).  We used it to assess the complexity of the corresponding Lisp code that 

computes the functions in Table 2. The simplest of them was p-averages.  Slightly more complex 

operations are p-adds, which adds two magnitudes, and p-subtracts, which subtracts a smaller 

magnitude from a larger one.  The results of the operations cannot be larger than the icon 

representing “certainty”, or smaller than the empty icon representing “impossibility”. 

 



                                                                                                            
 

 The operations in Table 2 underlie intuitive estimates of conjunctive, disjunctive, and 

conditional probabilities, which we described earlier. Conjunction, P(A&B), depends on p-

averages to resolve the conflict between the probabilities of the two conjuncts, P(A) and P(B). 

The system assesses the probability of a disjunction, P(AvB), guided by the uncertainty of 

disjunctions, and so it also uses p-averages. Conditional probability, P(B|A), uses A as evidence 

for B in the same way that system 1 uses evidence to assess the probability of a single event, 

such as Apple’s profitability.  If the evidence, A, neither increases nor decreases the magnitude of 

P(B), the system returns its initial estimate of P(B).  System 1 can compute elementary logical 

relations between A and B, such as:  

27. Clinton is elected US President in 2016 or Clinton is not elected US President in 2016 

and in this case returns the value of “certain” for the disjunction. 

In summary, system 1 in mReasoner infers intuitive non-numerical probabilities from 

mental models of evidence, which it represents iconically as magnitudes in order to combine 

them.  Its combinations depend on primitive analogs of averaging, adding, and multiplying 

magnitudes in these icons in order to infer the probabilities of compound events.  System 1, of 

course, has a role in other sorts of cognition, where it is susceptible to the same constraints on its 

operations.  For example, its limitations predict the intuitive conclusions that individuals tend to 

draw from syllogistic premises (see Khemlani, Lotstein, & Johnson-Laird, 2014).   In all three 

probabilistic cases that we have considered – conjunctive, disjunctive, and conditional 

probabilities – the output of system 1 is an icon representing an intuitive probability.  It can be 

put into qualitative descriptions using Aristotelian terms, as in (6) above, or it can be passed on 

to system 2 in order to be expressed numerically.  

  

 



                                                                                                            
 

 

 

Table 2: The five primitive arithmetical operations that System 1 in mReasoner carries out 

Primitive 
operations 

Input Operation Output 

p-averages One icon with two 
magnitude 
pointers 

Finite loop moves the two pointers an 
increment at a time so they converge on 
an approximate mid-point 

A magnitude that is an 
average of the initial 
pointers' magnitudes 

p-adds One icon with two 
magnitude 
pointers 

Finite loop joins each element of second 
magnitude to the first, checks result 
against maximum magnitude using p-
subtracts. 

A magnitude ≤ 
the one equivalent to 
“certainty”. 

p-subtracts One icon with two 
magnitude 
pointers 

Finite loop removes each element of 
second magnitude from the first. Halts if 
first magnitude becomes empty.   

A magnitude ≥ empty 
one equivalent to 
“impossibility”. 

p-longer One icon with two 
magnitude 
pointers 

Finite loop p-subtracts second 
magnitude from first.  

If first magnitude is not 
empty, returns “true”; 
otherwise “nil”. 

 
p-multiplies 

 
One icon with two 
non-empty 
magnitude 
pointers 

 
Finite loop p-adds second magnitude to 
first, and p-subtracts an element from 
second on each iteration.  Halts when 
second becomes empty. Checks result 
against maximum magnitude using p-
subtracts. 

 
A magnitude ≤ 
standard one equivalent 
to “certainty”. 

 
p-divides 

 
One icon with two 
non-empty 
magnitude 
pointers 

 
Finite loop p-subtracts denominator 
magnitude from numerator magnitude, 
p-adds an element to output on each 
iteration until numerator is p-longer 
than denominator. 

 
A magnitude > empty 
one equivalent to 
“impossibility”. 

 

4.2 The implementation of deliberations yielding numerical probabilities 

System 2 has access to working memory and so it can carry out more complex 

operations, including counting and arithmetic.  Its role in probabilistic inferences is likely to be 

confined to transforming non-numerical icons into numerical probabilities, and carrying out 

slightly more rational operations, such as the exact multiplication of probabilities for 

conjunctions, and their addition for disjunctions.  Multiplication, however, is normatively correct 

 



                                                                                                            
 

only for the conjunction of independent events, and addition is likewise normatively correct only 

for disjunctions of mutually inconsistent events.   The version of system 1 implemented in 

mReasoner is able to carry out primitive analogues of these operations too. Hence, a remaining 

open question is whether in fact these operations are carried out by system 2. 

 

4.3 The general predictions of the model theory 

 The model theory makes four general predictions about estimates of the probabilities of 

unique events: 

1. Probability estimates of unique events should be systematic: individuals from the same  

population have available roughly the same sorts of evidence about real possibilities, and 

so their estimates should concur reliably in rank order. 

2. The primitive operations of system 1 should lead to systematic violations of the JPD. In 

the case of a conjunction, intuition makes a simple compromise between conflicting 

values of P(A) and P(B), yielding their primitive average.  In the case of a disjunction, 

intuition takes the uncertainty between P(A) and P(B) to elicit their primitive average.  In 

the case of a conditional probability, P(B|A), intuition treats A as evidence for estimates 

of P(B). 

3. When individuals have already made estimates of P(A) and P(B), they should be more 

likely to use system 2’s methods to estimate conjunctive and disjunctive probabilities.  

Hence, they should tend to estimate P(A&B) as the product of P(A) and P(B), which is 

appropriate only for independent events; and they should tend to estimate P(AvB) as the 

sum of P(A) and P(B), which is also appropriate only for inconsistent events.  They have 

no deliberative method for estimating conditional probabilities about unique events. 

 



                                                                                                            
 

4. When individuals have already made estimates of P(A) and P(B), they should be faster to 

make estimates of any sort of compound. 

Although some studies have examined estimates of the probabilities of real unique possibilities 

(e.g., Zhao, et al., 2009), none as far as we know provides results that allow us to test these 

predictions. We therefore carried out three experiments to do so. Three different ways to fix the 

JPD for two binary variables A and B are as follows (see Appendix B): 

 1. P(A), P(B), and P(A&B) 

 2. P(A), P(B), and P(A or B or both) 

 3. P(A), P(B), and P(B|A). 

A challenge to readers is to discover a set of three judgments of probabilities that fix the JPD for 

two binary variables A and B, but that, no matter what their values are, these values cannot 

violate the JPD.  The triple can include probabilities of individual events, such as P(A) or P(B), 

and any sort of compound probabilities, such as P(A&B), P(A or B or both), or P(A|B).  We 

return to this puzzle at the end of the paper.  However, estimates for the three triples above can 

violate the JPD, and we used them in our experiments to test the model theory’s predictions.  In 

each study, participants estimated the probability of pairs of related unique events, P(A) and 

P(B). In Experiment 1, participants also made an estimate of the probability of their conjunction, 

P(A and B); in Experiment 2, they made an estimate of the probability of their disjunction, P(A 

or B or both); and in Experiment 3 they made estimates of the two conditional probabilities 

P(B|A) and P(A|B).  

 

5. Experiment 1: Conjunctions of unique events 

 When naive individuals estimate the probability of a conjunction of two unique events, 

 



                                                                                                            
 

the model theory predicts that their intuitions should be based on the primitive average of the 

probabilities of the two conjuncts, or, in deliberations, they should be based on multiplying them.  

The former yields violations of the JPD; the latter does not, but it is appropriate only when the 

two events are independent of one another.   

  

5.1 Method   

The participants each had to estimate sets of three probabilities of unique events in four different 

orders:  

 1. P(A&B), P(A), P(B)  

 2. P(A), P(A&B), P(B)  

 3. P(B), P(A&B), P(A)  

 4. P(A), P(B), P(A&B) 

There were 16 sets of materials, which concerned unique events in domains such as politics, 

sports, and science (Appendix C presents the full set of materials). For half the materials of the 

problems, A was likely to increase the value of P(B), and for the other half, A was likely to 

decrease the value of P(B).  In a prior norming study, judges decided independently whether A 

increased P(B), decreased P(B), or had no effect on P(B) for a larger battery of materials.  For the 

two sorts of materials in the present experiment, we used only items for which the majority of 

judges had categorized A as increasing P(A) and as decreasing P(B), respectively. Hence, A and 

B in the experiment were not independent events. The allocation of the materials to the four 

orders was random with the constraint that all the participants had four trials in each of the four 

orders, which were presented to each of them in a different random order.  The problems were 

presented one question at time in the appropriate order on the computer screen. The participants 

 



                                                                                                            
 

made a response by moving a slider on a scale from 0% to 100%, and the relevant percentage 

probability of the position of the slider appeared above it.  The instructions told the participants 

to make their best estimate of the probabilities of the events, but did not mention that their 

responses would be timed.  

 Forty-two participants completed the study for monetary compensation (a $10 lottery) on 

an online platform, Amazon Mechanical Turk (for an evaluation of the validity of this method, 

see Paolacci, Chandler, & Ipeirotis, 2010).  All of the participants stated that they were native 

English speakers. 

 

5.2 Results and discussion  

The participants concurred in the rank order of their estimates over the different materials 

for P(A), for P(B), and for P(A&B) (Kendall’s W’s = .32, .16 and .21, respectively, all ps < 

.0001).  These significant correlations corroborated the model theory’s first prediction that 

individuals rely at least in part on knowledge and processes in common to estimate unique 

probabilities.  The raw data for this experiment and the two subsequent ones are available at 

http://mentalmodels.princeton.edu/portfolio/unique-events/. 

Figure 1 shows the percentages of trials for each of the 16 materials in which participants 

estimated the probability of the conjunctions by taking p-averages of the probabilities of their 

conjuncts, and p-multiplies of the probabilities of the conjuncts.  We scored a response as a p-

average or as a p-multiplies provided a) that it was within 12.5% of the correct arithmetic value, 

which assumes a granularity of eight divisions in the belief icon; and b) in the case of p-average, 

that the conjunctive probability estimate was in between the estimated probabilities of the 

individual conjuncts. The balances of the percentages are cases in which the participants used 

 



                                                                                                            
 

other miscellaneous strategies of an unknown nature.  A multiplicative response would have been 

normative had the two events been mutually exclusive, but they were not. Goodness of fit 

metrics showed that a p-average of each participants’ estimates of P(A) and P(B), on a trial by 

trial basis, provided a better fit of the data (Kolmogorov-Smirnov test, D = .43, p < .001; R2 = 

.82, p < .0001; RMSE = .11) than a p-multiplication of their estimates of the two probabilities 

(Kolmogorov-Smirnov test, D = .45, p < .0005; R2 = .78, p < .0001; RMSE = .14).   

 

Figure 1: The percentages of trials on which the participants in Experiment 1 estimated P(A&B) 

by taking a p-average or a p-multiplication of P(A) and P(B) for each of the 16 materials in the 

experiment (see Appendix C).  The balances of percentages in each case were miscellaneous 

responses. 

 

But, the best fit with the data was a p-average for those estimates on which JPDs were violated 

and otherwise their p-multiplication (Kolmogorov-Smirnov test, D = .14, n.s.; p = .79; R2 = .91, 

p < .0001; RMSE = .05).  Overall, 28 of the 42 participants made conjunctive estimates that fell 

between their estimates of P(A) and P(B) on at least 50% of trials (Binomial test, p < .025, 

 



                                                                                                            
 

assuming a conservative prior probability of .5).  These results corroborate the model theory’s 

second prediction that individuals should make systematic violations of the norms of the 

probability calculus, and that in the case of conjunctions their estimates were either primitive 

averages or primitive products of the two probabilities (see Table 2). 

Table 3 presents the percentages of trials on which there were violations of the JPD, and 

the mean percentages that the participants estimated for the three sorts of events, depending on 

the order of the judgments.   As it shows, violations were quite marked when the conjunction 

came first in the series of judgments.  Indeed, order had a highly reliable effect on the frequency 

of violations: the earlier the position of the conjunction, the greater the likelihood of a violation 

(Page’s L = 531, z = 2.94, p < .003).  

 

Table 3. The percentages of trials yielding violations of the JPD in Experiment 1, and the mean 
percentage judgments for three sorts of events depending on their order. 
 
The estimation order The percentages 

of violations of 
JPD 

P(A)  as a 
percentage 

P(B)  as a 
percentage 

P(A&B) as a 
percentage 

1. P(A&B) P(A)  P(B)  61 41 32 30 
2. P(A)  P(A&B) P(B)  49 38 34 27 
3. P(B)  P(A&B) P(A)  51 35 38 28 
4. P(A)  P(B)  P(A&B) 46 38 41 29 
Overall results 50 38 37 29 
 

The percentages of estimates in which the participants p-multiplied P(A) and P(B) to estimate 

P(A&B) were as follows: 

 P(A&B) P(A) P(B)          25% 

 P(A)  P(A&B) P(B)         26% 

 P(B) P(A&B) P(A)          30% 

 P(A)  P(B) P(A&B)         42% 

 



                                                                                                            
 

The trend for more multiplicative responses the later in the series the estimate of P(A&B) 

occurred was reliable (Page’s L = 534, z = 3.27, p = .001, collapsing the two middle orders). This 

result corroborates the model theory’s third prediction.  

 The variability in the estimates of probability was similar across the different materials, 

with standard deviations ranging, for example, from 17% to 31% for estimates of P(A), and 

comparably for P(B).  A reviewer suggested that some participants might have opted for an easy 

solution in which they estimated 50% for all three probabilities, but in fact such a pattern of 

responses occurred only on less than 1% of trials. In general, responses of 50% were relatively 

rare in this experiment (and the subsequent ones), occurring on less than 5% of estimates.  In 

order to assess the variability in the participants’ responses, we computed Shannon’s measure of 

information for each participant.  Its overall mean was 0.90 bits, and it varied from 0.58 bits in 

the participant with the least variety in numerical responses to 1.10 bits in the participant the 

greater variety in numerical responses. The participants differed reliably in this measure 

(Friedman non-parametric analysis of variance, χ2  = 60.33, p < .001). This result suggests that 

participants did not use a single uniform strategy in estimating the probabilities of conjunctions, 

and they did not make trivial errors, such as estimates of 50% for all three probabilities. 

Figure 2 presents the latencies of the probability judgments.  Not surprisingly, estimates 

of the conjunction take longer than estimates of its conjuncts (Wilcoxon test, z = 5.07, p < 

.0001).  The latencies show that the earlier in the sequence an estimate of a conjunction is made, 

the longer it takes (Page’s L = 562, z = 6.33, p < .0001), and likewise for the estimates of the 

conjuncts.  The two preceding statistical tests depend only on the rank order of latencies, and so a 

transformation of the raw data, say, to log latencies, would have no effect on their results.  They 

corroborate the model theory’s fourth prediction. When the conjunction occurs first in the set of 

 



                                                                                                            
 

estimates, the participants think about both A and B in an intuitive way and map their estimates 

onto the numerical scale. But, when the judgments of P(A) or P(B) precede the judgment of their 

conjunction, its estimate can take into account the numerical estimates for the conjuncts.  Given 

these numerical estimates, individuals are also more likely to multiply probabilities and to avoid 

violations of the JPD.  

 

Figure 2. The latencies (s) of P(A), P(B), and P(A&B) in Experiment 1 depending on the order in 

which they were estimated. Text in bold shows the position in the sequence of estimates at which 

the relevant estimate was made. 

 

 

6. Experiment 2: Disjunctions of unique events  

Intuitive estimates of the probabilities of inclusive disjunctions should tend to be based on the 

primitive average of the estimates of the two disjuncts, and, as a result, to violate the JPD.  In 

cases in which participants deliberate, they should tend to add the estimates of the two disjuncts 

 



                                                                                                            
 

even though this procedure is appropriate only for mutually exclusive events.   Experiment 2 

tested the predictions using the same materials as those in the previous experiment, but the 

compound was now a disjunction:  

28.  What is the chance that a nuclear weapon will be used in a terrorist attack in the next 

 decade or there will be a substantial decrease in terrorist activity in the next 10 years, or 

 both?   

 

6.1 Method 

           The participants each had to estimate sets of three probabilities of unique events in two 

different orders: P(A), P(B), P(AvB), and P(AvB), P(A), P(B). They carried out 16 problems in 

total.  The order of the problems and the assignment of materials were randomized, and 

participants encountered a particular material only once in the experiment. The program that 

administered the experiment presented each question separately, and it recorded the participant’s 

numerical estimate and its latency.  The 41 participants who carried out the experiment were a 

new sample from the same population as before.  All of them stated that they were native English 

speakers.  They participated in a $10 lottery as in Experiment 1. 

 

6.2 Results and discussion.  

           The participants concurred in the rank order of their estimates over the different materials 

for P(A), for P(B), and for P(AvB) (Kendall’s W’s = .29, .17, .18, respectively, p < .0001 in all 

three cases).  The result corroborates the model theory’s first prediction that participants rely at 

least in part on knowledge and processes in common to make estimates of unique events.  Figure 

3 shows the percentages of trials for each of the 16 materials in which participants estimated the 

 



                                                                                                            
 

probability of the disjunctions by taking p-averages of the probabilities of their disjuncts, and p-

additions of the probabilities of the their disjuncts.  An additive response would have been 

normative had the two events been mutually inconsistent, but they were not. Goodness of fit 

metrics showed that the p-average of each participants’ estimates of P(A) and P(B), on a trial by 

trial basis, yielded a better fit of the data (Kolmogorov-Smirnov test, D = .29, p = .06; R2 = .60, p 

< .0001; RMSE = .09) than the p-addition of their estimates (Kolmogorov-Smirnov test, D = .71, 

p < .0001; R2 = .52, p < .0001; RMSE = .25).  The best fit was based on a p-average of P(A) and 

P(B) for violations of the JPD and otherwise their p-addition (Kolmogorov-Smirnov test, D = 

.24, n.s.; R2 = .77, p < .0001; RMSE = .11).  Overall, 32 of the 41 participants made disjunctive 

estimates that fell between their estimates of P(A) and P(B) on at least 50% of trials (Binomial 

test, p < .0005). They also bear out the restricted nature of system 1, which cannot compute the 

correct value of P(A) + P(B) – P(A&B). These results corroborate the model theory’s second 

prediction that individuals should make systematic violations of the norms of the probability 

calculus, and that in the case of disjunctions their estimates were either primitive averages or 

primitive additions of the two probabilities. 

 

Figure 3: The percentages of trials on which the participants in Experiment 2 estimated P(AvB) 

by taking a p-average or a p-addition of P(A) and P(B) for each of the 16 materials in the 

experiment (see Appendix C).  The balances of percentages in each case were miscellaneous 

responses. 

 



                                                                                                            
 

 

Table 4 presents the percentages of trials that violated the JPD, and the mean percentages 

for the three sorts of estimate.  Order had no reliable effect on the frequency of JPD violations 

(Wilcoxon test, z = 1.58, p = .12).  The percentages of estimates in which the participants added 

P(A) and P(B) to estimate P(AvB) were as follows:  

 P(AvB) P(A) P(B)           3% 

 P(A)  P(B) P(AvB)          5% 

There was no reliable difference between the two orders (Wilcoxon test, z = 1.29, p = .20), which 

is contrary to the third prediction of the model theory. But, as Figure 4 shows, the time to make 

an estimate speeded up over the triples of estimates (Page’s L = 562, z = 6.33, p < .0001).  The 

estimates of the disjunction took longer than estimates of its disjuncts (Wilcoxon test, z = 4.54, p 

< .0001), and longer when the disjunction occurred first than when it occurred last (Wilcoxon 

test, z = 4.73, p < .0001). This result corroborates the model theory’s fourth prediction. 

 

Table 4. The percentages of violations of the JPD in Experiment 2, and the mean percentage 
judgments for three sorts of events depending on their order. Bolded text indicates the position in 
the sequence of estimates at which the relevant estimate was made. 
 
The order of the  The percentage of P(A) as a P(B) as a P(AvB) as a 

 



                                                                                                            
 

judgments violations of the 
JPD 

percentage percentage percentage 

1. P(AvB) P(A)  P(B)  62 42 37 44 
2. P(A) P(B) P(AvB)   69 41 35 42 
Overall results 65 41 36 43 
 

 As in the previous experiment, we computed Shannon’s measure of information for the 

estimates of each participant.  Its overall mean was 0.96 bits, and it varied from 0.76 bits in the 

participant with the least variety in numerical responses to 1.07 bits in the participant the greater 

variety in numerical responses.  The participants differed reliably in this measure (Friedman non-

parametric analysis of variance, χ2  = 41.10, p = .0002). This result suggests that participants 

used a variety of strategies in estimating disjunctive probabilities.  In line with this result, only 3 

out of the 41 participants responded 50% to all three judgments on at least one trial in the 

experiment.   

When individuals estimate the probability of the disjunction last, they have access to their 

estimates of its disjuncts.  However, there was no evidence for an increase in additive responses 

when the disjunction occurred last, and the low level of these responses is surprising, though 

probably in part a consequence of the fact that on nearly a third of trials, a sum of the 

probabilities of the disjuncts would have exceeded a probability of 100%. 

 

Figure 4. The latencies (s) of the probability estimates in Experiment 2 depending on their order. 

Text in bold shows the position in the sequence of estimates at which the relevant estimate was 

made. 

 



                                                                                                            
 

 

 

 7. Experiment 3: Conditional probability estimates 

 The model theory postulates that individuals estimate the probability of an individual 

event, P(B), by adducing evidence.  It treats estimates of a conditional probability, P(B|A), in an 

entirely analogous way in which A is evidence pertinent to P(B).  In case individuals have a prior 

estimate of this probability, this new evidence can shift this estimate one way or another (see 

sections 3.1 and 4.1).  The process can lead to violations of the JPD, because it does not take into 

account either P(A) or the converse conditional probability. Experiment 3 tested the predicted 

corollaries of this account: the participants’ estimates should not accord with Bayes’s theorem, 

and often violate the JPD. 

 

7.1 Method 

         The participants made four probability estimates concerning two unique events in a fixed 

order: P(A), P(B|A), P(B), and P(A|B). Examples of P(B|A) and P(A|B) are as follows:  

29.  What is the chance that there will be a substantial decrease in terrorist activity in the next  

   10 years assuming that a nuclear weapon will be used in a terrorist attack in the next   

 



                                                                                                            
 

  decade?  

30. What is the chance that a nuclear weapon will be used in a terrorist attack in the next   

  decade assuming that there will be a substantial decrease in terrorist activity in the next  

  10 years? 

The sample of 43 participants was from the same population as before, and all of them stated that 

they were native English speakers.  They participated in a $10 lottery as in Experiment 1. They 

carried out 12 problems in total: 6 had materials in which A increased the value of P(B), and 6 

had materials in which A decreased the value of P(B) according to the previous norming study. 

The experiment accordingly used 12 of the 16 materials in Appendix C (see Figure 5 for a list of 

the 12 materials). The order of the problems was randomized for each participant.   The program 

that administered the experiment presented each question separately, and it recorded the 

participant’s numerical estimate and its latency. 

 

7.2 Results and discussion  

          The participants concurred in the rank order of the probabilities that they estimated over 

the different contents for P(A), for P(B), and for their conditional probabilities, P(B|A) and 

P(A|B) (Kendall’s Ws = .28, .14, .09, .17, respectively, p < .0001 in all four cases).  The result 

corroborates the model theory’s first prediction that participants adduce common evidence to 

make estimates of unique events, and it suggests that participants are prepared to estimate 

conditional probabilities in the absence of base rate information, because they estimated P(B|A) 

before they estimated P(A), which was a subsequent judgment on each trial. 

Goodness of fit metrics showed that the model theory provided a better fit of the data 

(Kolmogorov-Smirnov test, D = .26, p = .11; R2 = .55; RMSE = .10) than Bayes’s theorem or its 

 



                                                                                                            
 

equivalent ratio P(A&B)/P(A) (Kolmogorov-Smirnov test, D = .28, p = .07; R2 = .40; RMSE = 

.13).  But, the model theory’s fit is noticeably poorer than in the case of conjunctions 

(Experiment 1) and disjunctions (Experiment 2).  One possibility is that the prior norming study 

of whether A increases P(B) or decreases P(B) failed to do justice to the present participants’ 

beliefs.  We therefore carried out an analysis in which we examined the fit taking either one-step 

up or one-step down from each participant’s estimate of P(B) depending on the direction of the 

participant’s estimate of P(B|A), where a step was according to the granularity of mReasoner’s 

icon, i.e., a step of approximately 12.5% percent.  The resulting fit with the theory was 

comparable to the results of the previous experiments (Kolmogorov-Smirnov test, D = .19, p = 

.45; R2 = .73, p < .0001; RMSE = .07). Figure 5 shows the percentages of trials for each of the 16 

contents in which participants estimated the conditional probability, P(B|A), by adjusting their 

estimate of P(B) in this minimal way (categorized as such if a participants’ response fell within 

12.5% of the adjustment), and the percentages of trials on which their judgments were in accord 

with Bayes’s theorem. The resulting fit with the theory was comparable to the results of the 

previous experiments (Kolmogorov-Smirnov test, D = .19, p = .45; R2 = .73, p < .0001; RMSE = 

.07). 

 

Figure 5.  The percentages of trials on which the participants in Experiment 3 estimated P(B|A) 

by a minimal adjustment to P(B) and the percentages in accordance with Bayes’s theorem for 

each of the 12 contents in the experiment (see Appendix C).  The balances of percentages in each 

case were miscellaneous responses. 

 



                                                                                                            
 

 

 

Overall, the participants’ first three estimates violated the JPD on 24% of the trials, and 

42 out of the 43 participants made one or more such estimates (Binomial test, p < .0001).  On 

each trial, the participants’ first three estimates – of P(A), P(B|A), P(B) – provide the input for 

Bayes’s theorem to predict their fourth estimate of P(A|B), and so we examined to what extent 

they might rely on the theorem to make this fourth estimate.  The result was as follows: 

(Kolmogorov-Smirnov test, D = .37, p < .01; R2 = .02; RMSE = 1.25).  Hence, the correlation 

between the prediction based on Bayes’s theorem and the participants’ estimates was 

insignificant, and the two sets of data were reliably different.  In many cases, the participants’ 

first three estimates violated the JPD, but even when we capped the estimates to prevent such 

violations the correlation with Bayes’s prediction was weak (R2 = .29). These results corroborate 

the model theory’s second prediction that individuals should make systematic violations of the 

norms of the probability calculus.   

Table 5 presents the percentages of trials that violated the JPD, and the mean percentages 

of the four sorts of estimate depending on whether A increased or decreased the probability of 

 



                                                                                                            
 

event B.  This difference, estimated in the prior norming study, had an overall reliable effect on 

estimates of P(B|A) and P(A|B) (Wilcoxon test, z = 2.15, p = .03). The fixed order of the four 

estimates – P(A), P(B|A), P(B), P(A|B) did not allow us to evaluate the model theory’s third 

prediction.  Informal studies have sometimes found that individuals give the same values for the 

two conditional probabilities (Baron, personal communication).  Our participants did so on 15% 

of trials.   

Table 6 presents the latencies of the probability judgments.  The table shows that 

estimates of P(B|A) take longer than any of the other three estimates (Wilcoxon tests, zs > 3.75, 

ps < .0005), and that participants are faster to estimate P(B) than P(A) (Wilcoxon test, z = 4.83, p 

< .0001).  The data are consistent with the model theory’s fourth prediction that to estimate 

P(B|A), participants tacitly estimate P(B).  The result is to speed up their subsequent estimate of 

P(B).    

 

 Table 5. The percentages of trials violating the JPD in Experiment 3, and the mean percentage 

judgments for the four sorts of probability depending on the effect of A on P(B) established in a 

prior norming study. 

Effect of A on  
P(B) 

The percentage  
of violations of  
the JPD 

P(A) as a 
percentage 

P(B|A) as a 
percentage 

P(B) as a 
percentage 

P(A|B) as a 
percentage 

A increases P(B)  19 42 39 43 36 
A decreases P(B)   28 45 30 35 42 
Overall results 24 43 35 39 39 
 

Table 6. The latencies (s) of the probability estimates in Experiment 3 depending on the effect of 

A on P(B). 

Effect of A on P(B) Estimates of  

P(A) 

Estimates of  

P(B|A) 

Estimates of  

P(B) 

Estimates of  

P(A|B) 

 



                                                                                                            
 

A increases P(B) 10.76 11.54 7.07 10.11 
A decreases P(B) 9.26 12.07 9.16 9.87 
Overall means 10.01 11.81 8.12 9.99 
  

In general, the results of Experiment 3, like those of the previous experiments, corroborated the 

model theory. 

  

8.  General Discussion 

 Why, depending on the odds, do people accept or reject bets about unique events?   After 

all, an event such as the election of Hillary Clinton to the Presidency will either occur or not – a   

fact that has led frequentists to declare that a statement of its probability is meaningless 

(Cosmides & Tooby, 1996, p. 6) or that the probability calculus is irrelevant to these judgments 

(Gigerenzer, 1994).  A Bayesian riposte is that the probability of a unique event reflects the 

degree to which an individual believes in its occurrence, i.e., the event’s subjective probability.  

Hence, granted a good pay-off, when the odds of a bet offered by a bookmaker translate into a 

probability better than this subjective probability, individuals are apt to accept the bet; but when 

the odds translate into a probability worse than this subjective probability, they are apt to spurn it 

(de Finetti, 1936/1995; Ramsey, 1926/1990).  The riposte reveals three mysteries that the present 

paper was designed to solve: the source of the numbers in subjective probabilities, the 

mechanism that determines their magnitudes, and the process yielding the probabilities of 

compound assertions, such as disjunctions.  To tackle them, our research has introduced several 

innovations.  Previous studies of the probabilities of compounds reported errors in their estimates 

(e.g., Abelson, Leddo, & Gross, 1987; Zhao et al., 2009), but did not provide a definitive 

explanation of them.  We developed a dual-process theory postulating intuitions based on 

uncertainty, simulations of evidence in mental models, and deliberations that translated non-

 



                                                                                                            
 

numerical icons into numbers.  We implemented the model theory’s account of system 1 and 

system 2 in a computer program, mReasoner, which integrates deductive and probabilistic 

reasoning.  The model theory applies to estimates of the probabilities of unique events, and to 

conjunctive, disjunctive, and conditional probabilities of them. 

 The model theory distinguishes between system 1 and system 2 in computational power.  

System 1 has a severely curtailed power, carrying out loops of operations only a small number of 

times.  For a unique event, such as: 

31. What is the probability that Hillary Clinton is elected US President in 2016? 

individuals may have access to various sorts of knowledge pertinent to an estimate of probability.   

They may adduce knowledge of possibilities, of causal relations, and of other sorts of factors, 

such as: 

 • her age. 

• her gender.  

• her political career 

• her spouse 

• possible alternative Democratic candidates. 

• possible Republican candidates. 

The limitations of system 1 imply that individuals tend to adduce a minimum of evidence, but it 

is a task for future studies to investigate the number and the factors that determine it.  The theory 

implies that each piece of evidence is considered in relation to general knowledge.  Clinton, for 

example, will be older than that of most US presidents when they were elected (a median age of 

54 years), and so this renders her election slightly improbable.  The model theory proposes that 

the evidence is used to set an initial magnitude of belief, and to modify it if necessary in the light 

 



                                                                                                            
 

of subsequent evidence.  In mReasoner, quantified assertions play an exemplary role in yielding 

intuitive probabilities. For example, individuals may believe: 

32. Few candidates over the age of 60 years are elected to the US Presidency. 

But, the theory does not imply that all evidence must correspond to a quantified assertion.  Other 

evidence can be conditional: If a candidate’s health is poor then he or she may not be elected.  A 

reviewer suggested that evidence itself is weighted so that some facts play a bigger role than 

others in setting a probability.  Convincing evidence for the spontaneous use of such weightings 

would be contrary to the model theory, because a weighting mechanism seems beyond the 

capability of system 1. 

Given the preceding evidence (32), the program simulates it in a mental model, such as:   

33. Over 60 in age  elected US President 

            Over 60 in age  

            Over 60 in age  

            Over 60 in age 

The proportion of cases yields an analog magnitude in an icon corresponding to a degree of 

belief that Clinton is elected:  

34. |−−      |  

 The deliberative system 2 can map this icon into a numerical magnitude, such as a probability of 

30%. 

 The model theory postulates that intuitions take uncertainty as a prime sign of 

improbability.  One way in which uncertainty arises is when a conflict occurs.   Suppose, for 

example, that one piece of evidence suggests that the event in (31) is unlikely, whereas another 

piece of evidence suggests that it is likely.   System 1 resolves the conflict with a compromise.  It 

 



                                                                                                            
 

takes a primitive average, and infers that the event is as likely as not.  One unforeseen aspect of 

the implementation in mReasoner is the simplicity of primitive averaging in comparison with 

other primitive operations (see Table 2).  

 Conflicts can also occur in compounds of events.  Given that no logical relations exist 

between two unique events, A and B, a conflict arises in the probability of their conjunction, 

when system 1 yields different intuitive probabilities for them.   System 1 again resolves the 

conflict by taking their primitive average.  A slightly more rational response in the light of the 

probability calculus is to take their primitive product, though this response is correct only if one 

event has no effect on the probability of the other.   Suppose, now, that such a conflict arises in 

the probability of an inclusive disjunction of two unique events, A or B or both – again, on the 

assumption that there are no logical implications between them.   Disjunctions yield uncertainty 

(e.g., Bauer & Johnson-Laird, 1993; Tversky & Shafir, 1992), which cues improbability.  And so, 

once again, system 1 uses the compromise of a primitive average.   A slightly more rational 

response in this case is to sum P(A) and P(B), though this response is correct only if A and B 

cannot both occur. 

 Some philosophers and psychologists have argued that individuals estimate a conditional 

probability, P(B|A), using a modified version of Ramsey’s test (e.g., Bennett, 2003; Evans, 2007, 

p. 54).   You add A to your beliefs. If you know that A is false, you adjust your beliefs where 

necessary to ensure their consistency, and then you estimate the probability of B.  The problem is 

that individuals have too many beliefs, and so a test of their consistency is intractable (Johnson-

Laird, Girotto, & Legrenzi, 2004; Oaksford & Chater, 2007, p. 107).  Given that system 1 lacks 

computational power, intuitions about a conditional probability, P(B|A), are likely to rely on a 

much simpler procedure.  System 1 treats A as evidence that may increase P(B) or decrease it 

 



                                                                                                            
 

(see Section 3.1).  In the absence of a logical relation between them, the system then makes a 

minimal adjustment – in terms of the granularity of icons – in order to revise P(B).   If A has no 

effect on the probability of B, then the two events are independent, and no adjustment to P(B) is 

necessary. This procedure for conditional probabilities has a family resemblance to Ramsey’s 

test, but, as its implementation in mReasoner shows (see Section 4.1), it is tractable and rapid 

enough to square with the latencies of the participants’ estimates in Experiment 3. 

 The use of intuitions, as the model theory and mReasoner imply, leads to numerical 

estimates of the probabilities of compounds that should tend to violate the probability calculus.   

To measure the degree of such violations, we introduced a measure based on negative 

probabilities in the complete joint probability distribution (JPD), where the JPD for two events, A 

and B, is the following set of probabilities: P(A&B), P(A&¬B), P(¬A&B), and P(¬A&¬B), 

where “¬” denotes negation (see the Introduction).  The predictions with one exception were 

corroborated in all three of our experiments: 

 First, the participants concurred, weakly but reliably, in the rank order of their estimates 

of the probabilities of unique events, and their compounds. 

Second, they tended to violate the JPD in the ways that the model theory predicts.  

According to the probability calculus, the probability of a conjunction of events, P(A&B), is the 

product of the probability of one event, such as P(A), and the conditional probability of the other 

event, P(B|A).  This computation is beyond the power of system 1, and so, as the model theory 

predicts, individuals tend to take a primitive average of the two probabilities, or otherwise to 

multiply them (Experiment 1).  The average yields violations of the JPD, but it provided a better 

fit to the data than a simple multiplicative account.  The best fit used both procedures.  The use 

of averaging was even apparent in the overall means in four of the problems.  For instance, the 

 



                                                                                                            
 

mean estimate of the conjunction of millions of people living past 100 and an end to the 

replacement organ shortage was 22%, a value falling between the mean estimates of the two 

conjuncts (19% and 52%, respectively), and these means violate the JPD. The probability of an 

inclusive disjunction of events, P(AvB), equals P(A) + P(B) – P(A&B).  This computation is also 

beyond the power of system 1, and so the model theory predicts that the uncertainty evoked by 

disjunctions leads individuals to average the probabilities of the disjuncts.  The primitive 

averaging operation yields violations of the JPD, but it provided a better fit to the data than an 

additive model (Experiment 2).  The best fit used both procedures, though the addition of 

probabilities is appropriate only if the disjunction was exclusive, not inclusive.  The conditional 

probability, P(B|A), can be computed according to Bayes’s theorem (3).  This computation is 

again beyond the power of system 1, and so too is the equivalent computation of the ratio of 

P(A&B) to P(A).   In fact, as the model theory predicts, individuals tend to adjust P(B) a minimal 

amount according to whether A increases or decreases the probability of B.  This simple 

procedure provided a better fit to the data than Bayes’s theorem (Experiment 3).  The best fit of 

all ignored the predicted effect of A on P(B) as determined in a prior norming study, and simply 

adjusted P(B) up or down by a minimal amount.  In other words, participants seem to have 

differed for certain contents from those tested in the norming study about the effects of A on 

P(B). 

 Third, estimates of the probability of a conjunction were more likely to be multiplicative 

after the participants had estimated the numerical probabilities of their conjuncts (Experiment 1).  

The one exception to a corroboration of the model theory was there was no reliable sign of a 

greater tendency for additive estimates of disjunctions when these estimates occurred last in the 

series. Very few participants in the study made additive estimates, perhaps because many such 

 



                                                                                                            
 

additions would have exceeded a probability of 100%.  

  Fourth, estimates of the probabilities of conjunctions and disjunctions were faster after 

estimates of their constituents (Experiments 1 and 2).  The estimates of conditional probabilities, 

P(B|A) also took longer than the estimates of P(A) or P(B), and the estimate of the conditional 

probability, as the model theory predicts, speeded up estimates of P(B) (Experiment 3).   

 The role of deliberations about probabilities (in system 2) is curtailed by ignorance.  Most 

people know little about the probability calculus.  Readers of this article know that the 

probability of a conjunction cannot be larger than that of either of its conjuncts, and that the 

probability of an inclusive disjunction cannot be smaller than that of either of its disjuncts.  They 

are less aware, we suspect, of the third constraint on each of these estimates (see Appendix B): 

given P(A) and P(B) an estimate of P(A&B) can be too low, and an estimate of P(AvB) can be too 

high.  The constraints on conditional probabilities are still more recondite.  Before we started this 

research, our guess would have been that P(A) and P(B) put no constraints on P(A|B) in order to 

yield a consistent JPD.  Even experts do not know at once what the constraints are, but have to 

calculate them (see Appendix A).   We can illustrate the impotence of system 2 with two 

problems.  The first problem is: 

34. If P(A) =  .7 and P(B) = .3, what is the range of values for the conditional probability 

 P(A|B) that yield a consistent JPD? 

The second problem has the opposite values: 

35. If P(A) =  .3 and P(B) = .7, what is the range of values for P(A|B) that yield a consistent  

 JPD? 

The exact numerical values call for calculation, but which of the two problems allows a greater 

range of values for P(A|B)?  The answer is the first problem, which for a consistent JPD allows 

 



                                                                                                            
 

that the conditional probability can be anywhere from 0 to 1, whereas for the second problem it 

must be in the narrower range from 0 to .42 to two decimal places.  Even the use of the Ramsey 

test to estimate conditional probabilities overlooks the constraint that P(A) can put on P(B|A). 

          Skeptics might argue that our participants are not making real estimates of probabilities.  

They are instead indulging in unprincipled guesses. Evidence counts against this conjecture.  The 

participants performed better than chance in all three experiments (see Appendix B for the 

chance values).  They concurred about the relative probabilities of the different contents, and 

these reliable concordances in all three experiments imply that they relied to some degree on 

common knowledge.  The latencies of responses showed systematic patterns, reflecting greater 

thought about compounds than about their constituent events, and faster responses to compounds 

when the participants had already assessed the numerical probabilities of their constituents.  

Indeed, the robust fit of the processes implemented in mReasoner to the patterns of data could 

not have occurred without the participants’ reliance on systematic mental processes.  

  Other skeptics might argue that alternative theories could account for our results, and that 

no need exists to postulate a dual-process theory or processes based on mental models.  For 

example, an alternative theory might posit that degrees of belief depend on activations of 

particular chunks in memory (Anderson, 1990), or else reflect the causal power of instances of 

one concept on those of another (e.g., Cheng, 1997).  Of course, no results can ever show that a 

theory is the only possible one, and so clearly other theories might be framed to explain the 

phenomena.  It is critical, however, that any alternative theory accounts for the origins of 

numerical estimates from non-numerical premises, for how this information is mentally 

represented, and for why estimates violate the JPD.  Accounts of reasoning based on formal rules 

of inference (e.g., Rips, 1994) offer no account of quantifiers, such as “most” and “few”, and so 

 



                                                                                                            
 

they cannot explain their role in probabilistic thinking.  Perhaps surprisingly, theories of 

reasoning based on probability logic (e.g., Oaksford and Chater, 2007) offer no account of how 

numerical probabilities derive from non-numerical considerations.  Hence, at present, the model 

theory offers the only explanation of the phenomena, it is implemented in a computer program, 

and its predictions emerge from its unification of deductive and probabilistic reasoning.  We have 

previously compared the model theory’s predictions for conjunctions with other extant theories 

of probabilistic estimates (Khemlani et al., 2012), though these alternative theories were not 

framed for the probabilities of unique possibilities (Fantino et al., 1997; Wyer, 1976).  The 

comparison showed that the computational implementation of mReasoner yields a better fit to 

data about the probabilities of conjunctions than these alternatives.  

 The present results have implications for the role that probabilities play in higher 

cognition.  Marcus and Davis (2013) have shown how the apparent successes of probabilistic 

approaches to a variety of tasks – from categorization to inferences in naïve physics – may 

depend on investigators’ bias selecting certain tasks and neglecting others, and also on the choice 

of different statistical models from one domain to another.  In the case of reasoning, recent 

developments – often motivated by the goal of sustaining the rationality of naïve individuals – 

have led to a cumulative introduction of probabilities into accounts of simple classical 

deductions.   A modest step is to argue that the meaning of a conditional assertion, such as: 

36.  If Clinton is elected US President in 2016 then all wars in the world will cease thereafter. 

is a conditional probability (e.g., Adams, 1998; Douven & Verbrugge, 2013; Pfeifer, 2013; 

Pfeifer & Kleiter, 2005).  The next step replaces deductive validity with probabilistic validity, 

where an inference is probabilistically valid provided that the informativeness of its conclusion 

(1 minus its probability) is not greater than sum of the premises’ informativeness (Adams, 1998).  

 



                                                                                                            
 

One proponent of a probabilistic approach to deduction, however, proposes to abandon its 

normative evaluation in favor of description alone (Evans, 2012).  Others argue: “people are far 

better probabilistic reasoners than Tversky and Kahneman supposed” (Oaksford & Chater, 1998, 

p. 262).  The burden of the present results on violations of the JPD is that not only were Tversky 

and Kahneman correct, but that human competence is still worse than one might have supposed: 

errors occur even when inferences about probabilities are not elicited in scenarios likely to 

trigger heuristics such as representativeness. 

 The most radical probabilistic proposal replaces the classical probability calculus with 

quantum probabilities, which treat JPDs with negative values as acceptable, and so every 

response in our experiments is rational.  But, if psychologists abandon all norms of rationality, or 

equivalently allow that any set of estimates of probabilities is rational, no way exists to assess 

competence.   Yet, people differ in the ability to reason.  The Wright brothers were better thinkers 

about aeronautical matters than their rivals, and their ability to think of counterexamples to their 

own conjectures helped them to develop the first controllable heaver-than-air craft (Johnson-

Laird, 2006, Ch. 25).  Likewise, John Snow was a better thinker about the mode of 

communication of cholera than the proponents of the rival  “miasma” theory.  He understood that 

the gas laws refuted communication by way of a miasma (Ibid., Ch. 27).  Yet, a single 

counterexample as a decisive refutation plays no role in the approaches to reasoning summarized 

above, and so the yardstick distinguishing between good and bad thinking is in danger of 

disappearing too.  

 Let us put aside issues of rationality, and ask what is certain in the light of our research.  

It establishes five points about naive probabilities: 

1. Individuals readily make numerical estimates of the probabilities of unique events. 

 



                                                                                                            
 

2. Their estimates yield systematic violations of the probability calculus.   

3. These violations are predictable in terms of the intuition that uncertainty cues 

improbability. 

4. The implementation of this principle in a particular dual-process algorithm predicts the 

violations.  Of course, there are infinitely many other possible algorithms that can also do 

so in principle – though as far as we know no alternatives yet exist. 

5. If intuitions about probabilities underlie deductive reasoning then people will err in 

making deductions too, even granted the yardstick of probabilistic validity.  

How might individuals avoid violations of the probability calculus in estimating the probabilities 

of unique possibilities?   Conjunctions seem transparent, and perhaps the best way to reveal their 

true nature is to consider the conjunction of very rare events, such as the probability of winning 

the New York lottery and being struck by lightning on the same day.  Individuals may realize that 

such a conjunction is less probable than either of its conjuncts.  Disjunction creates a veil of 

uncertainty, and one way to lift the veil is to use disjunctions of mutually exclusive events, which 

reduce the number of mental models.  Deductions from exclusive disjunctions are easier than 

those from inclusive disjunctions (e.g., Bauer & Johnson-Laird, 1993; Johnson-Laird et al., 

1992), and so too should be inferences of their probabilities.  Individuals should be more likely 

to make a primitive addition of probabilities.  Still easier should be exclusive disjunctions that 

are clearly exhaustive, such as the probability that a card is either an ace or not. 

 At the end of Section 4.3, we raised the problem of a set of three probabilities that fix the 

JPD for two binary variables A and B, but whose values can never violate it.  A simple case is an 

instance of the law of total probability (e.g., Gnedenko & Khinchin, 1961, p. 31): 

 P(A) = P(A|B).P(B) + P(A|¬B). P(¬ B) 

 



                                                                                                            
 

If we substitute b for P(B), x for P(A | B), and y for P(A | ¬ B) then: 

 P(A) = xb + y(1 – b) 

The values of b, x, and y, are free to vary in the unit interval [0, 1], and they fix the value of 

P(A).  Hence, no matter what their values are the following three probabilities fix the JPD and 

cannot violate it: 

 P(B), P(A|B), and P(A|¬ B). 

We owe this argument to an anonymous reviewer.  There are other answers too, e.g., the three 

conditional probabilities also fix the JPD and cannot violate it: 

 P(B|A), P(A|B), and P(A|¬B). 

 In conclusion, the intuitions of naïve individuals accord with the Bayesian interpretation 

of probabilities as degrees of belief.  This interpretation extends to unique events, which are 

important in daily life and in science.  The relative rarity of compound bets in prediction markets 

may reflect folk wisdom about the difficulty of conforming to the probability calculus, and hence 

a potential vulnerability to “Dutch books”.   The model theory, which bases rationality on 

computations that simulate the world (Craik, 1943), explains this difficulty in terms of the 

restricted operations of the intuitive system of reasoning.  They curtail the ways in which the 

system can combine evidence and estimate conjunctive, disjunctive, and conditional 

probabilities.  
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Appendix A: The constraints on conditional probabilities 

Depending on the values of P(A) and P(B), sometimes there are no constraints on P(A|B) other 

than it is in the unit interval [0, 1] , sometimes P(A|B) must be larger than a certain value greater 

than 0, sometimes it must be smaller than a certain value less than 1, and sometimes it must lie 

between two such values, in order to yield a coherent JPD.   With higher values of P(B), the 

narrower the constraints.   One way to derive the bounds is from the formulas for each 

component of the JPD given P(A), P(B), and P(A|B): 

 P(A&B) = P(B) . P(A|B)  

            P(A&¬B) = P(A) – (P(B) . P(A|B)) 

 P(¬A&B) = P(B) – (P(B) . P(A|B)) 

 P(¬A&¬B) = (1 + (P(B) . (P(A|B) – 1))) – P(A) 

Each of these values must be in the unit interval [0, 1] and the resulting inequalities from these 

four formulas simplify to two:  

            P(A) ≥ (P(B) . P(A|B)) ≥ (P(A) + P(B) – 1) 

A more general and rigorous derivation, which we owe to personal communications from 

Osherson, Kleiter, and Gilio, 5/26/13 (see also Wallmann & Kleiter, 2013), is: 

 If P(A) = x, P(B) = y, then max{0, x + y – 1/x} ≤ P(B|A) ≤ min{1, y/x}. 

In standard treatments of conditional probabilities, P(B|A) is undefined in case P(A) = 0, but in 

treatments in which conditional probabilities are treated as undefined primitives, as in the 

analysis due to de Finetti (1970), the value of P(B|A) can be anywhere in the unit interval in this 

case.  

  

 



                                                                                                            
 

Appendix B: Formulas and constraints of the complete joint probability distributions 

Table B1: The formulas for the complete joint probability distributions (JPD), the constraints that 

they yield on the values of triples for conjunctive, disjunctive, and conditional probabilities for 

consistent JPDs, and the percentages of 0, 1, and 2 violations of the JPDs from exhaustive 

searches of possible values for the different triples of probability judgments.   Note: “¬” denotes 

negation, “&” denotes conjunction, “v” denotes inclusive disjunction, and “|” denotes a 

conditional probability. 1% of instances of cases of conditional probabilities are undefined 

because of potential divisions by 0, and those instances were dropped from the table.  

The formulas for the JPD 
 

The constraints to be satisfied 
for a consistent JPD 

 

Chance 
percentages of n   
violations of the 

JPD 
0        1        2 

Conjunctions: P(A), P(B), P(A&B) 
P(A&B)     = given      
P(A&¬B)   = P(A) - P(A&B) P(A) ≥ P(A&B) 

17 50 33 
P(¬A&B)   = P(B) - P(A&B) P(B) ≥ P(A&B) 
P(¬A&¬B) = 1 - (P(A)+P(B) - P(A&B)) 1.0   ≥ P(A) + P(B) - P(A&B) 

Disjunctions: P(A), P(B), P(AvB) 

P(¬A&¬B) = 1 - P(AvB) 
P(¬A&B)   = (1 - P(A)) - P(¬A&¬B) 

  
P(AvB) ≥  P(A)  

17 

 

50 

 

33 
P(A&B)     = P(B) - P(¬A&B)    P(AvB) ≥  P(B) 
P(A&¬B)   = P(A) - P(A&B) P(B)      ≥  P(A) - P(AvB) 

Conditional probabilities: P(A), P(B), P(B|A) 
P(A&B)       = P(A) * P(B|A) 
P(A&¬B)     = P(A) - P(A) * P(B|A) 
P(¬A&B)     = P(B) - P(A) * P(B|A) 

 
 
P(B)  ≥ P(A) * P(B|A) 

 

50 

 

50 

 

0 P(¬A&¬B)   = 1 - (P(A&B) + P(A&¬B)  
                        + P(¬A&B)) 

P(A) * P(B|A) ≥ P(A) + P(B) - 1  

 

 

 



                                                                                                            
 

Appendix C: The 16 sets of materials used in the three experiments were based on the following conjunctions, where the first 

conjunct is A and the second conjunct is B in the estimates of probabilities. 

 

Material 
number 

Assertion 1 
What is the probability that… 

Assertion 2 
What is the probability that… 

1 space tourism will achieve widespread popularity in 
the next 50 years? 

advances in material science will lead to the 
development of anti-gravity materials in the next 50 
years? 

2 
in less than 15 years, millions of people will live past 
100? 

advances in genetics will end the shortage of 
replacement organs in the next 15 years? 

3 
the Supreme Court rules on the constitutionality of 
gay marriage in the next 5 years? 

that a gay person will be elected as president in the 
next 50 years? 

4 
Greece will make a full economic recovery in the next 
10 years? 

Greece will be forced to leave the EU? 

5 
a nuclear weapon will be used in a terrorist attack in 
the next decade? 

there will be a substantial decrease in terrorist activity 
in the next 10 years? 

6 
the United States will sign the Kyoto Protocol and 
commit to reducing CO2 emissions in next 15 years? 

global temperatures reach a theoretical point of no 
return in the next 100 years? 

 



                                                                                                            
 

7 intelligent alien life is found outside the solar system 
in the next 10 years? 

world governments dedicate more resources to 
contacting extra-terrestrials? 

8 the United States adopts an open border policy of 
universal acceptance? 

English is legally declared the official language of the 
United States? 

9 Honda will go bankrupt in 2012? Ford will go bankrupt before the end of 2013? 

10 a significant upturn in the economy occurs next year? Obama will be reelected President in 2012? 

11 a new illegal but synthetic drug becomes popular in 
the USA over the next two years? 

the movement to decriminalize drugs doubles its 
numbers by 2015? 

12 US companies focus their advertising on the Web next 
year? the New York Times becomes more profitable? 

13 3-dimensional graphics will be required to contain 
explicit markers to indicate their unreal nature by 
2020 

competitive video game playing will achieve 
mainstream acceptance by 2020? 

14 intellectual property law in the US will be updated to 
a reflect advances in technology by the year 2040? 

Russia will become the world center for software 
development by 2040? 

15 at least one head of state will be assassinated by 
2012? 

NATO will grant military support to Arab Spring 
movements in several countries? 

16 scientists will discover a cure for Parkinson's disease 
in 10 years? 

the number of patients who suffer from Parkinson's 
disease will triple by 2050? 

 
Note: Data from Experiments 1, 2, and 3 were collected in 2010 and 2011. Several of the materials reference years that have since 
passed and therefore have definitive answers, but they were controversial for the participants in our experiments.  

 


